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Abstract
We present new analytical results concerning the spectral distributions for (2×2)
random real symmetric matrices which generalize the Wigner surmise.

PACS numbers: 05.40.-a, 02.10.Yn, 05.30.Jp, 21.10.-k

1. Introduction

The level statistics of a quantum system represents the most significant, although not the
only [1], signature of quantum chaos. The Poisson and Wigner distributions of dimensionless
nearest-neighbour spacing, s,

p̃P (s) = exp (−s), (1)

p̃W (s) = πs

2
exp

(
−πs2

4

)
, (2)

are known in quantum chaos theory as two universalities that correspond to two extreme
cases of classical dynamics, namely purely regular and completely chaotic (see, e.g., [2]).
The majority of many-body systems such as nuclei, molecules, atoms or solids (see [1, 3, 4]
and references therein) have been found to be chaotic although for such complex systems no
classical limit can be constructed.

As was first recognized by Wigner [5], the nearest-neighbour spacing distribution (NNSD)
(2) corresponds well to the eigenvalue distributions of random matrices, and this explains
the importance of the random matrix theory [6] for studying statistical properties of many-
body systems. Particular attention was paid to Gaussian ensembles. In fact, assuming that
(i) the elements of the Hamiltonian matrix are independent real variables and (ii) the matrix
distribution is invariant under an orthogonal transformation of the basis states (see, e.g., chapter
3 in [6]), one finds that the matrix elements are independent Gaussian variables with zero mean
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and with variance satisfying the conditions σ 2
ij = (1 + δij )σ 2. Imposing particular symmetries

on the Hamiltonian, one gets [7] Gaussian orthogonal, unitary or symplectic ensembles (GOE,
GUE or GSE, respectively), which are widely and successfully applied in many fields of physics
(see, e.g., reviews [1, 3, 4]).

Up to now, excited atomic nuclei have been considered to be the best examples of chaotic
quantum systems [1]. Starting from slow-neutron scattering experiments, which were first
described in terms of random matrices [5], much nuclear structure data has been analysed in
the context of chaos. However, it was repeatedly noticed that the experimental data do not
exactly match the distribution (2) and exhibit slight deviations [8, 9]. These deviations are
thought to be caused by the fact that the real system is not purely chaotic, but can be the
quantum analogue of a classical system that is transitional between chaotic and integrable. In
this context, a few phenomenological formulae were proposed and analysed. The most famous
are the Brody [8] distribution,

p̃ω(s) = (ω + 1)αsω exp
(−αsω+1

)
, α =

[
�

(
ω + 2

ω + 1

)]ω+1

, (3)

which was shown to match better the experimental data [9] on both high- and low-energy
nuclear spectra, and the Berry–Robnik distribution [10]

p̃BR(s) = exp[(q−1)s]{(1−q)2erfc(
√
πqs/2)+[2q(1−q)+(π/2)q3s] exp[−(π/4)q2s2]}.(4)

Although the Brody distribution takes the Poisson form for ω = 0 and the Wigner form for
ω = 1, it has the unrealistic property that its derivative goes to infinity at ε = 0 [11]. Moreover,
the parameterω has no clear physical meaning. On the other hand, the distribution (4) does not
give a level repulsion for non-integrable systems. Caurier et al [11] considered a model which
allowed them to simulate the transition from integrability to chaos and succeeded in deriving
the asymptotic limits for small and large neighbour spacings in the near-integrable limit.

The idea of deriving a third universality class corresponding to intermediate statistics has
been actively pursued in recent years. In particular, in [12, 13], the distribution of n nearest
neighbours,

p̃(β)(n, s) = (β + 1)n(β+1)

�[n(β + 1)]
s[n(β+1)−1] exp [−(β + 1)s], (5)

was shown to be relevant to a certain class of exactly solvable models with nearest and
next-to-nearest neighbour interactions, generalizing the results obtained earlier [14, 15] on
pseudointegrable billiards and the short-range Dyson models. Remarkably, the NNSD given
by (5) with n = 1 exhibits a level repulsion ∼ sβ and falls to zero at s as exp [−(β + 1)s]. For
β = 1 it is referred to as the semi-Poisson distribution [14, 15].

In this letter we argue that one might search for an explanation of the discrepancy between
data and random matrix theory simply by generalising the random matrix ensemble used. In
fact, the Gaussian ensemble is defined by the two assumptions (i) and (ii) mentioned above,
and their applicability should be carefully checked for a given physical system. As far as
nuclear physics is concerned, the deviations of the experimental data on slow-neutron or (p, p′)
resonances from a random matrix description could simply arise from the non-invariance of
the random matrix ensemble under an orthogonal transformation of a basis; i.e., the assumption
(ii) is violated.

In addition, it is well known that realistic interactions in many-body nuclear, molecular or
atomic systems are predominantly of one- and two-body nature, implying that the distribution
of the matrix is not only not invariant under an orthogonal (unitary) transformation of the
basis, but also that the elements of the Hamiltonian matrix are not independent (if the number
of particles is more than two); i.e., both assumptions for a Gaussian ensemble no longer hold.
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In this context, French and Wong [16] and Bohigas and Flores [17] independently introduced
the two-body random ensemble (TBRE), which is characterized by a Gaussian level density
distribution, rather than a semi-circle provided by a GOE [16]. The level distributions of
experimental nuclear spectra confirmed this result. The NNSD relevant for a TBRE was found
numerically to be fairly well represented by the Wigner surmise [18], although recently it has
been pointed out [19] that the NNSD given by (5) with n = 1 and a certain real value of β fits
better the shell-model spectrum obtained with the sd interaction of Wildenthal [20].

Given the importance and actuality of these investigations, we present in this letter some
analytical results concerning the properties of (2×2) random symmetric matrices for which the
assumption (ii) mentioned above is not satisfied. First, we derive the Hamiltonian distribution
as a function of its eigenvalues and we calculate the NNSD which generalizes the well-
known Wigner surmise [5]. We show that the model allows us to describe the transition from
purely chaotic to asymptotically nearly integrable limits, being different from the intermediate
statistics mentioned above. Then, for a particular case, we give the analytical expressions for
the lowest moments of this distribution. Finally, we propose a method to derive the moments
of the eigenvalue distribution without knowledge of an explicit expression for the distribution.

2. Generalized Wigner surmise

Let us consider a (2×2) real symmetric matrix

H =
(

H11 H12

H21 H22

)
, (6)

whose elements are independent Gaussian variables with zero mean and variance σ 2
ij , and

H12 = H21. The probability density of the matrix H is then given by

p(H) = 1

(2π)3/2
√
σ 2

11σ
2
12σ

2
22

exp

[
−
(
H 2

11

2σ 2
11

+
H 2

12

2σ 2
12

+
H 2

22

2σ 2
22

)]
. (7)

Each matrix H can be diagonalized in an orthogonal basis and therefore H = OtDO, with

O =
(

cos θ − sin θ
sin θ cos θ

)
and D =

(
Eα 0
0 Eβ

)
.

Similar to the case of the GOE [21], we find that in the general case

H11 = Eα cos2 θ + Eβ sin2 θ ,
H12 = (

Eα − Eβ

)
cos θ sin θ ,

H22 = Eα sin2 θ + Eβ cos2 θ .

We deduce that the probability density expressed in terms of the eigenvalues and the angle θ is

p
(
Eα,Eβ, θ

) = Eα − Eβ

(2π)3/2
√
σ 2

11σ
2
22σ

2
12

× exp

{
−
[
Eα�

2 − (Eα − Eβ)
(
σ 2

11 cos2 θ + σ 2
22 sin2 θ

)]2

2σ 2
11σ

2
22�

2

}

× exp

[
−1

2
(Eα − Eβ)

2

(
cos2(2θ)

�2
+

sin2(2θ)

4σ 2
12

)]
(8)

where �2 = σ 2
11 + σ 2

22 and Eα − Eβ � 0.
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Figure 1. Quadratic Rayleigh–Rice distributions for χ = 1 (solid line), χ = 2 (dashed line) and
χ = 5 (dotted line) with σ 2 = 1.

The nearest-neighbour spacing distribution for the variable ε = Eα −Eβ = Ds, with the
mean spacing D = ∫

εp̃(ε) dε, is given by the following integral

p̃ (ε) =
∫ π/2

−π/2
dθ
∫ ∞

−∞
dEα

∫ Eα

−∞
dEβ p

(
Eα,Eβ, θ

)
δ
(
ε − Eα + Eβ

)
, (9)

from which we obtain

p̃ (ε) = ε

2
√
�2σ 2

12

exp

[
−ε2

(
�2 + 4σ 2

12

)
16�2σ 2

12

]
I0

(
ε2
(
�2 − 4σ 2

12

)
16�2σ 2

12

)
(10)

where I0 is a modified Bessel function of the first kind.
The expression (10) looks like a Rayleigh–Rice distribution, well known in signal

theory [22], except for the argument of I0, which is not linear as in the usual Rayleigh–Rice
distribution but quadratic. This is why we will refer to p̃ (ε) as to a quadratic Rayleigh–Rice
distribution.

Let us consider a particular case when the diagonal matrix elements have the same variance
σ 2

11 = σ 2
22, which is χ times larger than the variance, σ 2

12 = σ 2, of the non-diagonal matrix
elements, i.e., χ = σ 2

11/σ
2
12. Then the eigenvalue distribution (8) reduces to

pχ(Eα,Eβ, θ) = Eα − Eβ

(2πσ 2)3/2χ
exp

[
−E2

α + E2
β + 1

4 (Eα−Eβ)
2(χ−2) sin2(2θ)

2χσ 2

]
, (11)

while for the nearest-neighbour spacing we get

p̃χ (ε) = ε√
2χ2σ 2

exp

(
− (χ + 2) ε2

16χσ 2

)
I0

(
(χ − 2)ε2

16χσ 2

)
. (12)

For χ = 2, expression (12) reduces to the Wigner surmise. The distributions p̃χ (ε) are plotted
in figure 1 for χ = 1, χ = 2 and χ = 5.
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Table 1. The moments up to n = 5 of the quadratic Rayleigh–Rice distribution (12) for σ 2 = 1.
For n = 1, one obtains the mean spacing D. F is the hypergeometric function [23].

Mn = ∫∞
0 εnp̃χ (ε) dε values for χ = 2 for χ = 5

n = 0 1 1 1

n = 1 4χ
√

2π(χ + 2)−3/2F

[
3
4 ,

5
4 , 1,

(
χ−2
χ+2

)2
] √

2π 1.3
√

2π

n = 2 2 (2 + χ) 8 14

n = 3 96χ2
√

2π(χ + 2)−5/2F

[
5
4 ,

7
4 , 1,

(
χ−2
χ+2

)2
]

12
√

2π 28.7
√

2π

n = 4 4
(
12 + 4χ + 3χ2

)
128 428

n = 5 3840χ3
√

2π(χ + 2)−7/2F

[
7
4 ,

9
4 , 1,

(
χ−2
χ+2

)2
]

240
√

2π 1139.2
√

2π

For small values of ε, the distribution (12) goes linearly to zero,

p̃χ (ε) ∝ 1√
2χ2σ 2

ε, (13)

while for large ε

p̃χ (ε) ∝




√
2

| χ − 2 | σ 2
exp

(
− ε2

4χσ 2

)
χ 
= 2

ε

4σ 2
exp

(
− ε2

8σ 2

)
χ = 2.

(14)

The asymptotic behaviour has a functional dependence on ε similar to that of the Wigner
surmise; i.e., the NNSD (11) goes linearly to zero for ε → 0 and it falls down according
to exp (−ε2) for ε → ∞. However, as seen from (13), (14), the natural dependence on χ
provides a certain scaling.

To calculate various statistical characteristics, it is often required to know certain moments
of the distribution. Thus, we have derived analytical expressions for some moments of the
distribution (12), and the lowest are given in table 1.

From (12) and the expression of the mean spacing, D (cf table 1), we have derived the
distribution of the dimensionless nearest-neighbour spacing, s = ε/D:

qχ(s) = D p̃χ(sD) . (15)

For χ = 2, one finds the Wigner distribution (2). It can be shown that for χ and χ ′ = 4/χ ,
the two functions qχ and qχ ′ are equal.

The distributions qχ for χ = 4, χ = 30, χ = 500 and χ = 1000 are plotted in figure 2
and compared with the Poisson (dashed), Wigner (dotted) and semi-Poisson (dashed-dotted)
distributions. Note that the semi-Poisson distribution can be fairly well approximated for
χ = 30 although its asymptotic behaviour for large s is different. As follows from figure 2, the
parameter χ allows us to describe a transition of a quantum system from a completely chaotic
limit (χ = 2) to a nearly integrable one (χ → ∞ or χ → 0). However, the integrability
characterized by the Poisson distribution (1) can never be reached (compare this with the
model of Caurier et al [11]).

Indeed, integrating pχ in (11) over Eβ from −∞ to Eα and over Eα from −∞ to +∞, we
obtain the angular distribution

rχ (θ) = 1

π

√
χ

2

1[
1 + 1

2 (χ − 2) sin2 (2θ)
] . (16)
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Figure 2. Nearest-neighbour spacing distributions qχ (solid line) for (a) χ = 4, (b) χ = 30, (c)
χ = 500 and (d) χ = 1000. The Poisson distribution is plotted as a dashed line, the Wigner
distribution as a dotted line and the semi-Poisson as a dashed-dotted line.

This distribution is represented in figure 3 for different values of χ . For χ = 2 it is an exactly
uniform distribution, which means that there is no privileged basis (the orthogonal invariance
holds). For high values of χ , the initial basis is nearly the eigenbasis (the diagonal elements
are much larger than the non-diagonal ones); thus rχ takes its maximum absolute values for
θ = 0 and θ = π/2, whereas for small values of χ the eigenstates are more likely obtained
after a rotation of π/4 of the initial basis and rχ is maximum for θ = π/4. For χ and χ ′ = 4/χ
the two curves are in quadrature.

We can re-express pχ(Eα,Eβ) as a function of ε and S = Eα + Eβ . Then pχ can be
factorized into a function depending on ε times a function depending on S; i.e., these variables
are independent. Moreover, since S is the trace of the matrix it is a Gaussian variable with
zero mean and all its odd moments are zero. From the independence of ε and S we deduce
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Figure 3. Angular distributions for χ = 1 (dotted line), χ = 2 (dashed line) and χ = 5 (solid
line).

that the moments of the eigenvalues fulfil

〈En
α〉 = (−1)n〈En

β〉, (17)

〈En
α〉 = 1

2n

n/2∑
p=0

(
n
2p

) 〈S2p〉〈εn−2p〉. (18)

From (17) and (18), we can derive the moments of the eigenvalues whose distributions are
difficult to compute. Note that we deduce from (17) that the highest and the lowest eigenvalues
have opposite mean values and the same variance.

3. Conclusion

The study of the statistical properties of spectra of realistic Hamiltonians requires the
consideration of a random matrix ensemble whose elements are not independent or whose
distribution is not invariant under orthogonal transformation of a chosen basis. In this letter
we have concentrated on the properties of (2×2) real symmetric matrices whose elements
are independent Gaussian variables with zero means but do not belong to the GOE. We have
derived the distribution of eigenvalues for such a matrix, the NNSD which generalizes the
Wigner surmise and we have calculated some important moments. The asymptotic properties
of the distribution obtained are functionally identical to those of the ordinary Wigner surmise.
For finite χ , the model considered here allows us to describe the transition from chaos to
near integrability (the exact integrable limit is never realized). Thus it represents a chaotic
system, although with a degree of disorder less important than in the Wigner surmise. The
derivation of similar analytical expressions for matrices of larger dimensions is technically
difficult. However, we believe that the present results already justify the use of an NNND of



L206 Letter to the Editor

type (12) to fit the data as an alternative to the Brody distribution. We also think that these
results can be extended to Hermitian matrices.
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